
16
More rings

This chapter develops a number of more advanced concepts concerning rings.
These concepts will play important roles later in the text, and we prefer to dis-
cuss them now, so as to avoid too many interruptions of the flow of subsequent
discussions.

16.1 Algebras
Throughout this section, R denotes a ring (i.e., a commutative ring with unity).

Sometimes, a ring may also be naturally viewed as an R-module, in which case,
both the theory of rings and the theory of modules may be brought to bear to study
its properties.

Definition 16.1. An R-algebra is a set E, together with addition and multiplica-
tion operations on E, and a function µ : R × E → E, such that

(i) with respect to addition and multiplication, E forms a ring;

(ii) with respect to addition and the scalar multiplication map µ, E forms an
R-module;

(iii) for all c ∈ R, and α, β ∈ E, we have

µ(c, α)β = µ(c, αβ) = αµ(c, β).

An R-algebra E may also be called an algebra over R. As we usually do for
R-modules, we shall write cα (or c · α) instead of µ(c, α). When we do this, part
(iii) of the definition states that

(cα)β = c(αβ) = α(cβ)

for all c ∈ R and α, β ∈ E. In particular, we may write cαβ without any ambiguity.
Note that there are two multiplication operations at play here: scalar multiplication
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422 More rings

(such as cα), and ring multiplication (such as αβ). Also note that since we are
assuming E is commutative, the second equality in part (iii) is already implied
by the first. A simple consequence of the definition is that for all c, d ∈ R and
α, β ∈ E, we have (cα)(dβ) = (cd)(αβ). From this, it follows that for all c ∈ R,
α ∈ E, and k ≥ 0, we have (cα)k = ckαk.

Example 16.1. Suppose E is a ring and τ : R → E is a ring homomorphism. With
scalar multiplication defined by cα := τ(c)α for c ∈ R and α ∈ E, one may easily
check that E is indeed an R-algebra. In this case, we say that E is an R-algebra
via the map τ. 2

Example 16.2. If R is a subring of E, then with τ : R → E being the inclusion
map, we can view E as an R-algebra as in the previous example. In this case, we
say that E is an R-algebra via inclusion. 2

Example 16.3. If τ : R → E is a natural embedding of rings, then by a slight
abuse of terminology, just as we sometimes say that R is a subring of E, we shall
also say that E is an R-algebra via inclusion. 2

In fact, all R-algebras can be viewed as special cases of Example 16.1:

Theorem 16.2. If E is an R-algebra, then the map

τ : R → E

c 7→ c · 1E ,

is a ring homomorphism, and cα = τ(c)α for all c ∈ R and α ∈ E.

Proof. Exercise. 2

In the special situation whereR is a field, we can say even more. In this situation,
and with τ as in the above theorem, then either E is trivial or τ is injective (see
Exercise 7.47). In the latter case, E contains an isomorphic copy ofR as a subring.
To summarize:

Theorem 16.3. If R is a field, then an R-algebra is either the trivial ring or con-
tains an isomorphic copy of R as a subring.

The following examples give further important constructions of R-algebras.

Example 16.4. IfE1, . . . ,Ek areR-algebras, then their direct productE1×· · ·×Ek
is an R-algebra as well, where addition, multiplication, and scalar multiplication
are defined component-wise. As usual, if E = E1 = · · · = Ek, we write this as
E×k. 2
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Example 16.5. If I is an arbitrary set, and E is an R-algebra, then Map(I ,E),
which is the set of all functions f : I → E, may be naturally viewed as an
R-algebra, with addition, multiplication, and scalar multiplication defined point-
wise. 2

Example 16.6. Let E be an R-algebra and let I be an ideal of E. Then it is easily
verified that I is also a submodule of E. This means that the quotient ring E/I
may also be viewed as an R-module, and indeed, it is an R-algebra, called the
quotient algebra (over R) of E modulo I . For α, β ∈ E and c ∈ R, addition,
multiplication, and scalar multiplication in E are defined as follows:

[α]I + [β]I := [α + β]I , [α]I · [β]I := [α · β]I , c · [α]I := [c · α]I . 2

Example 16.7. The ring of polynomials R[X ] is an R-algebra via inclusion. Let
f ∈ R[X ] be a non-zero polynomial with lc(f ) ∈ R∗. We may form the quotient
ring E := R[X ]/(f ), which may naturally be viewed as an R-algebra, as in the
previous example. If deg(f ) = 0, then E is trivial; so assume deg(f ) > 0, and
consider the map

τ : R → E

c 7→ c · 1E
from Theorem 16.2. By definition, τ(c) = [c]f . As discussed in Example 7.55, the
map τ is a natural embedding of rings, and so by identifying R with its image in
E under τ, we can view R as a subring of E; therefore, we can also view E as an
R-algebra via inclusion. 2

Subalgebras
Let E be an R-algebra. A subset S of E is called a subalgebra (over R) of E if it
is both a subring of E and a submodule of E. This means that S contains 1E , and
is closed under addition, multiplication, and scalar multiplication; restricting these
operations to S, we may view S as an R-algebra in its own right.

The following theorem gives a simple but useful characterization of subalgebras,
in relation to subrings:

Theorem 16.4. If E is an R-algebra via inclusion, and S is a subring of E, then
S is a subalgebra if and only if S contains R. More generally, if E is an arbitrary
R-algebra, and S is a subring of E, then S is a subalgebra of E if and only if S
contains c · 1E for all c ∈ R.

Proof. Exercise. 2
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R-algebra homomorphisms
Let E and E ′ be R-algebras. A function ρ : E → E ′ is called an R-algebra
homomorphism if ρ is both a ring homomorphism and an R-linear map. This
means that ρ(1E ) = 1E ′ , and

ρ(α + β) = ρ(α) + ρ(β), ρ(αβ) = ρ(α)ρ(β), and ρ(cα) = cρ(α)

for all α, β ∈ E and all c ∈ R. As usual, if ρ is bijective, then it is called an
R-algebra isomorphism, and if, in addition, E = E ′, it is called an R-algebra
automorphism.

The following theorem gives a simple but useful characterization of R-algebra
homomorphisms, in relation to ring homomorphisms:

Theorem 16.5. If E and E ′ are R-algebras via inclusion, and ρ : E → E ′ is
a ring homomorphism, then ρ is an R-algebra homomorphism if and only if the
restriction of ρ to R is the identity map. More generally, if E and E ′ are arbitrary
R-algebras and ρ : E → E ′ is a ring homomorphism, then ρ is an R-algebra
homomorphism if and only if ρ(c · 1E ) = c · 1E ′ for all c ∈ R.

Proof. Exercise. 2

Example 16.8. If E is an R-algebra and I is an ideal of E, then as observed in
Example 16.6, I is also a submodule of E, and we may form the quotient algebra
E/I . The natural map

ρ : E → E/I

α 7→ [α]I

is both a ring homomorphism and an R-linear map, and hence is an R-algebra
homomorphism. 2

Example 16.9. Since C contains R as a subring, we may naturally view C as an
R-algebra via inclusion. The complex conjugation map on C that sends a + bi to
a − bi, for a, b ∈ R, is an R-algebra automorphism on C (see Example 7.5). 2

Many simple facts about R-algebra homomorphisms can be obtained by com-
bining corresponding facts for ring and R-module homomorphisms. For example,
the composition of two R-algebra homomorphisms is again an R-algebra homo-
morphism, since the composition is both a ring homomorphism and an R-linear
map (Theorems 7.22 and 13.6). As another example, if ρ : E → E ′ is an R-
algebra homomorphism, then its image S ′ is both a subring and a submodule of
E ′, and hence, S ′ is a subalgebra of E ′. The kernel K of ρ is an ideal of E, and
we may form the quotient algebra E/K. The first isomorphism theorems for rings
and modules (Theorems 7.26 and 13.9) tell us that E/K and S ′ are isomorphic
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both as rings and as R-modules, and hence, they are isomorphic as R-algebras.
Specifically, the map

ρ : E/K → E ′

[α]K 7→ ρ(α)

is an injective R-algebra homomorphism whose image is S ′.

The following theorem isolates an important subalgebra associated with any R-
algebra homomorphism ρ : E → E.

Theorem 16.6. Let E be an R-algebra, and let ρ : E → E be an R-algebra
homomorphism. Then the set S := {α ∈ E : ρ(α) = α} is a subalgebra of E,
called the subalgebra of E fixed by ρ. Moreover, if E is a field, then so is S.

Proof. Let us verify that S is closed under addition. If α, β ∈ S, then we have

ρ(α + β) = ρ(α) + ρ(β) (since ρ is a group homomorphism)

= α + β (since α, β ∈ S).

Using the fact that ρ is a ring homomorphism, one can similarly show that S is
closed under multiplication, and that 1E ∈ S. Likewise, using the fact that ρ is an
R-linear map, one can also show that S is closed under scalar multiplication.

This shows that S is a subalgebra, proving the first statement. For the second
statement, suppose that E is a field. Let α be a non-zero element of S, and suppose
β ∈ E is its multiplicative inverse, so that αβ = 1E . We want to show that β lies in
S. Again, using the fact that ρ is a ring homomorphism, we have

αβ = 1E = ρ(1E ) = ρ(αβ) = ρ(α)ρ(β) = αρ(β),

and hence αβ = αρ(β); canceling α, we obtain β = ρ(β), and so β ∈ S. 2

Example 16.10. The subalgebra of C fixed by the complex conjugation map is
R. 2

Polynomial evaluation
Let E be an R-algebra. Consider the ring of polynomials R[X ] (which is an R-
algebra via inclusion). Any polynomial g ∈ R[X ] naturally defines a function on
E: if g =

∑

i aiX
i, with each ai ∈ R, and α ∈ E, then

g(α) :=
∑

i

aiα
i.

Just as for rings, we say that α is a root of g if g(α) = 0E .
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For fixed α ∈ E, the polynomial evaluation map

ρ : R[X ]→ E

g 7→ g(α)

is easily seen to be an R-algebra homomorphism. The image of ρ is denoted R[α],
and is a subalgebra of E. Indeed, R[α] is the smallest subalgebra of E contain-
ing α, and is called the subalgebra (over R) generated by α. Note that if E is
an R-algebra via inclusion, then the notation R[α] has the same meaning as that
introduced in Example 7.44.

We next state a very simple, but extremely useful, fact:

Theorem 16.7. Let ρ : E → E ′ be an R-algebra homomorphism. Then for all
g ∈ R[X ] and α ∈ E, we have

ρ(g(α)) = g(ρ(α)).

Proof. Let g =
∑

i aiX
i ∈ R[X ]. Then we have

ρ(g(α)) = ρ
(

∑

i

aiα
i
)

=
∑

i

ρ(aiαi) =
∑

i

aiρ(αi) =
∑

i

aiρ(α)i

= g(ρ(α)). 2

As a special case of Theorem 16.7, if E = R[α] for some α ∈ E, then every
element of E can be expressed as g(α) for some g ∈ R[X ], and ρ(g(α)) = g(ρ(α));
hence, the action of ρ is completely determined by its action on α.

Example 16.11. Let f ∈ R[X ] be a non-zero polynomial with lc(f ) ∈ R∗. As in
Example 16.7, we may form the quotient algebra E := R[X ]/(f ).

Let ξ := [X ]f ∈ E. Then E = R[ξ], and moreover, every element of E can be
expressed uniquely as g(ξ), where g ∈ R[X ] and deg(g) < deg(f ). In addition, ξ
is a root of f . If deg(f ) > 0, these facts were already observed in Example 7.55,
and otherwise, they are trivial.

Now let E ′ be any R-algebra, and suppose that ρ : E → E ′ is an R-algebra
homomorphism, and let ξ′ := ρ(ξ). By the previous theorem, ρ sends g(ξ)
to g(ξ′), for each g ∈ R[X ]. Thus, the image of ρ is R[ξ′]. Also, we have
f (ξ′) = f (ρ(ξ)) = ρ(f (ξ)) = ρ(0E ) = 0E ′ . Therefore, ξ′ must be a root of f .

Conversely, suppose that ξ′ ∈ E ′ is a root of f . Then the polynomial evalu-
ation map from R[X ] to E ′ that sends g ∈ R[X ] to g(ξ′) ∈ E ′ is an R-algebra
homomorphism whose kernel contains f . Using the generalized versions of the
first isomorphism theorems for rings and R-modules (Theorems 7.27 and 13.10),
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we obtain the R-algebra homomorphism

ρ : E → E ′

g(ξ) 7→ g(ξ′).

One sees that complex conjugation is just a special case of this construction (see
Example 7.57). 2

EXERCISE 16.1. Let E be an R-algebra. For α ∈ E, consider the α-multiplication
map on E, which sends β ∈ E to αβ ∈ E. Show that this map is an R-linear map.

EXERCISE 16.2. Show that every ring may be viewed in a unique way as a Z-
algebra, and that subrings are subalgebras, and ring homomorphisms are Z-algebra
homomorphisms.

EXERCISE 16.3. Show that the only R-algebra homomorphisms from C into itself
are the identity map and the complex conjugation map.

16.2 The field of fractions of an integral domain
Let D be an integral domain. Just as we can construct the field of rational numbers
by forming fractions involving integers, we can construct a field consisting of frac-
tions whose numerators and denominators are elements of D. This construction is
quite straightforward, though a bit tedious.

To begin with, let S be the set of all pairs of the form (a, b), with a, b ∈ D

and b 6= 0D. Intuitively, such a pair (a, b) is a “formal fraction,” with numer-
ator a and denominator b. We define a binary relation ∼ on S as follows: for
(a1, b1), (a2, b2) ∈ S, we say (a1, b1) ∼ (a2, b2) if and only if a1b2 = a2b1. Our
first task is to show that this is an equivalence relation:

Lemma 16.8. For all (a1, b1), (a2, b2), (a3, b3) ∈ S, we have

(i) (a1, b1) ∼ (a1, b1);

(ii) (a1, b1) ∼ (a2, b2) implies (a2, b2) ∼ (a1, b1);

(iii) (a1, b1) ∼ (a2, b2) and (a2, b2) ∼ (a3, b3) implies (a1, b1) ∼ (a3, b3).

Proof. (i) and (ii) are rather trivial, and we do not comment on these any further. As
for (iii), assume that a1b2 = a2b1 and a2b3 = a3b2. Multiplying the first equation
by b3, we obtain a1b2b3 = a2b1b3 and substituting a3b2 for a2b3 on the right-hand
side of this last equation, we obtain a1b2b3 = a3b2b1. Now, using the fact that b2

is non-zero and that D is an integral domain, we may cancel b2 from both sides,
obtaining a1b3 = a3b1. 2
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Since ∼ is an equivalence relation, it partitions S into equivalence classes, and
for (a, b) ∈ S, we denote by [a, b] the equivalence class containing (a, b), and
we denote by K the set of all such equivalence classes. Our next task is to define
addition and multiplication operations on equivalence classes, mimicking the usual
rules of arithmetic with fractions. We want to define the sum of [a1, b1] and [a2, b2]
to be [a1b2 + a2b1, b1b2], and the product of [a1, b1] and [a2, b2] to be [a1a2, b1b2].
Note that since D is an integral domain, if b1 and b2 are non-zero, then so is the
product b1b2, and therefore [a1b2 + a2b1, b1b2] and [a1a2, b1b2] are indeed equiv-
alence classes. However, to ensure that this definition is unambiguous, and does
not depend on the particular choice of representatives of the equivalence classes
[a1, b1] and [a2, b2], we need the following lemma.

Lemma 16.9. Let (a1, b1), (a′1, b′1), (a2, b2), (a′2, b′2) ∈ S, where (a1, b1) ∼ (a′1, b′1)
and (a2, b2) ∼ (a′2, b′2). Then we have

(a1b2 + a2b1, b1b2) ∼ (a′1b
′
2 + a

′
2b
′
1, b′1b

′
2)

and

(a1a2, b1b2) ∼ (a′1a
′
2, b′1b

′
2).

Proof. This is a straightforward calculation. Since a1b
′
1 = a′1b1 and a2b

′
2 = a′2b2,

we have

(a1b2 + a2b1)b′1b
′
2 = a1b2b

′
1b
′
2 + a2b1b

′
1b
′
2 = a′1b2b1b

′
2 + a

′
2b1b

′
1b2

= (a′1b
′
2 + a

′
2b
′
1)b1b2

and

a1a2b
′
1b
′
2 = a′1a2b1b

′
2 = a′1a

′
2b1b2. 2

In light of this lemma, we may unambiguously define addition and multiplication
on K as follows: for [a1, b1], [a2, b2] ∈ K, we define

[a1, b1] + [a2, b2] := [a1b2 + a2b1, b1b2]

and

[a1, b1] · [a2, b2] := [a1a2, b1b2].

The next task is to show that K is a ring — we leave the details of this (which
are quite straightforward) to the reader.

Lemma 16.10. With addition and multiplication as defined above, K is a ring,
with additive identity [0D, 1D] and multiplicative identity [1D, 1D].

Proof. Exercise. 2
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Finally, we observe that K is in fact a field: it is clear that [a, b] is a non-zero
element of K if and only if a 6= 0D, and hence any non-zero element [a, b] of K
has a multiplicative inverse, namely, [b, a].

The field K is called the field of fractions of D. Consider the map τ : D → K

that sends a ∈ D to [a, 1D] ∈ K. It is easy to see that this map is a ring homomor-
phism, and one can also easily verify that it is injective. So, starting from D, we
can synthesize “out of thin air” its field of fractions K, which essentially contains
D as a subring, via the natural embedding τ : D → K.

Now suppose that we are given a field L that contains D as a subring. Consider
the set K ′ consisting of all elements of L of the form ab−1, where a, b ∈ D and
b 6= 0D — note that here, the arithmetic operations are performed using the rules
for arithmetic in L. One may easily verify that K ′ is a subfield of L that contains
D, and it is easy to see that this is the smallest subfield of L that contains D. The
subfield K ′ of L may be referred to as the field of fractions of D within L. One
may easily verify that the map ρ : K → L that sends [a, b] ∈ K to ab−1 ∈ L is an
unambiguously defined ring homomorphism that maps K injectively onto K ′. If
we view K and L as D-algebras via inclusion, and we see that the map ρ is in fact
a D-algebra homomorphism. Thus, K and K ′ are isomorphic as D-algebras. It is
in this sense that the field of fractions K is the smallest field that contains D as a
subring.

From now on, we shall simply write an element [a, b] of K as the fraction a/b.
In this notation, the above rules for addition, multiplication, and testing equality in
K now look quite familiar:

a1

b1
+
a2

b2
=
a1b2 + a2b1

b1b2
,

a1

b1
·
a2

b2
=
a1a2

b1b2
,

a1

b1
=
a2

b2
⇐⇒ a1b2 = a2b1.

Function fields
An important special case of the above construction for the field of fractions of D
is when D = F [X ], where F is a field. In this case, the field of fractions is denoted
F (X ), and is called the field of rational functions (over F ). This terminology is
a bit unfortunate, since just as with polynomials, although the elements of F (X )
define functions, they are not (in general) in one-to-one correspondence with these
functions.

Since F [X ] is a subring of F (X ), and since F is a subring of F [X ], we see that
F is a subfield of F (X ).

More generally, we may apply the above construction to D = F [X1, . . . ,Xn],
the ring of multi-variate polynomials over the field F , in which case the field of
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fractions is denoted F (X1, . . . ,Xn), and is also called the field of rational functions
(over F , in the variables X1, . . . ,Xn).

EXERCISE 16.4. Let F be a field of characteristic zero. Show that F contains an
isomorphic copy of Q.

EXERCISE 16.5. Show that the field of fractions of Z[i] within C is Q[i]. (See
Example 7.25 and Exercise 7.14.)

16.3 Unique factorization of polynomials
Throughout this section, F denotes a field.

Like the ring Z, the ring F [X ] of polynomials is an integral domain, and because
of the division with remainder property for polynomials, F [X ] has many other
properties in common with Z. Indeed, essentially all the ideas and results from
Chapter 1 can be carried over almost verbatim from Z to F [X ], and in this section,
we shall do just that.

Recall that the units of F [X ] are precisely the units F ∗ of F , that is, the non-
zero constants. We call two polynomials g, h ∈ F [X ] associate if g = ch for some
c ∈ F ∗. It is easy to see that g and h are associate if and only if g | h and h | g—
indeed, this follows as a special case of part (i) of Theorem 7.4. Clearly, any non-
zero polynomial g is associate to a unique monic polynomial (i.e., a polynomial
with leading coefficient 1), called the monic associate of g; indeed, the monic
associate of g is lc(g)−1 · g (where, as usual, lc(g) denotes the leading coefficient
of g).

We call a polynomial f ∈ F [X ] irreducible if it is non-constant and all divisors
of f are associate to 1 or f . Conversely, we call f reducible if it is non-constant
and is not irreducible. Equivalently, a non-constant polynomial f is reducible if
and only if there exist polynomials g, h ∈ F [X ] of degree strictly less than that of
f such that f = gh.

Clearly, if g and h are associate polynomials, then g is irreducible if and only if
h is irreducible.

The irreducible polynomials play a role similar to that of the prime numbers. Just
as it is convenient to work with only positive prime numbers, it is also convenient
to restrict attention to monic irreducible polynomials.

Corresponding to Theorem 1.3, every non-zero polynomial can be expressed as
a unit times a product of monic irreducibles in an essentially unique way:

Theorem 16.11. Every non-zero polynomial f ∈ F [X ] can be expressed as

f = c · pe1
1 · · · p

er
r ,
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where c ∈ F ∗, p1, . . . , pr are distinct monic irreducible polynomials, and e1, . . . , er
are positive integers. Moreover, this expression is unique, up to a reordering of the
irreducible polynomials.

To prove this theorem, we may assume that f is monic, since the non-monic
case trivially reduces to the monic case.

The proof of the existence part of Theorem 16.11 is just as for Theorem 1.3. If
f is 1 or a monic irreducible, we are done. Otherwise, there exist g, h ∈ F [X ] of
degree strictly less than that of f such that f = gh, and again, we may assume that
g and h are monic. By induction on degree, both g and h can be expressed as a
product of monic irreducible polynomials, and hence, so can f .

The proof of the uniqueness part of Theorem 16.11 is almost identical to that of
Theorem 1.3. The key to the proof is the division with remainder property, Theo-
rem 7.10, from which we can easily derive the following analog of Theorem 1.6:

Theorem 16.12. Let I be an ideal of F [X ]. Then there exists a unique polynomial
d ∈ F [X ] such that I = dF [X ] and d is either zero or monic.

Proof. We first prove the existence part of the theorem. If I = {0}, then d = 0 does
the job, so let us assume that I 6= {0}. Since I contains non-zero polynomials, it
must contain monic polynomials, since if g is a non-zero polynomial in I , then its
monic associate lc(g)−1g is also in I . Let d be a monic polynomial of minimal
degree in I . We want to show that I = dF [X ].

We first show that I ⊆ dF [X ]. To this end, let g be any element in I . It suf-
fices to show that d | g. Using Theorem 7.10, we may write g = dq + r, where
deg(r) < deg(d). Then by the closure properties of ideals, one sees that r = g− dq
is also an element of I , and by the minimality of the degree of d, we must have
r = 0. Thus, d | g.

We next show that dF [X ] ⊆ I . This follows immediately from the fact that
d ∈ I and the closure properties of ideals.

That proves the existence part of the theorem. As for uniqueness, note that if
dF [X ] = eF [X ], we have d | e and e | d, from which it follows that d and e are
associate, and so if d and e are both either monic or zero, they must be equal. 2

For g, h ∈ F [X ], we call d ∈ F [X ] a common divisor of g and h if d | g and
d | h; moreover, we call such a d a greatest common divisor of g and h if d is
monic or zero, and all other common divisors of g and h divide d. Analogous to
Theorem 1.7, we have:

Theorem 16.13. For all g, h ∈ F [X ], there exists a unique greatest common divi-
sor d of g and h, and moreover, gF [X ] + hF [X ] = dF [X ].

Proof. We apply the previous theorem to the ideal I := gF [X ] + hF [X ]. Let
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d ∈ F [X ] with I = dF [X ], as in that theorem. Note that g, h, d ∈ I and d is monic
or zero.

It is clear that d is a common divisor of g and h. Moreover, there exist s, t ∈ F [X ]
such that gs + ht = d. If d′ | g and d′ | h, then clearly d′ | (gs + ht), and hence
d′ | d.

Finally, for uniqueness, if e is a greatest common divisor of g and h, then d | e
and e | d, and hence e is associate to d, and the requirement that e is monic or zero
implies that e = d. 2

For g, h ∈ F [X ], we denote by gcd(g, h) the greatest common divisor of g and
h. Note that as we have defined it, lc(g) gcd(g, 0) = g. Also note that when at least
one of g or h are non-zero, gcd(g, h) is the unique monic polynomial of maximal
degree that divides both g and h.

An immediate consequence of Theorem 16.13 is that for all g, h ∈ F [X ], there
exist s, t ∈ F [X ] such that gs+ ht = gcd(g, h), and that when at least one of g or h
are non-zero, gcd(g, h) is the unique monic polynomial of minimal degree that can
be expressed as gs + ht for some s, t ∈ F [X ].

We say that g, h ∈ F [X ] are relatively prime if gcd(g, h) = 1, which is
the same as saying that the only common divisors of g and h are units. It is
immediate from Theorem 16.13 that g and h are relatively prime if and only if
gF [X ] + hF [X ] = F [X ], which holds if and only if there exist s, t ∈ F [X ] such
that gs + ht = 1.

Analogous to Theorem 1.9, we have:

Theorem 16.14. For f , g, h ∈ F [X ] such that f | gh and gcd(f , g) = 1, we have
f | h.

Proof. Suppose that f | gh and gcd(f , g) = 1. Then since gcd(f , g) = 1, by
Theorem 16.13 we have fs + gt = 1 for some s, t ∈ F [X ]. Multiplying this
equation by h, we obtain fhs + ght = h. Since f | f by definition, and f | gh by
hypothesis, it follows that f | h. 2

Analogous to Theorem 1.10, we have:

Theorem 16.15. Let p ∈ F [X ] be irreducible, and let g, h ∈ F [X ]. Then p | gh
implies that p | g or p | h.

Proof. Assume that p | gh. The only divisors of p are associate to 1 or p. Thus,
gcd(p, g) is either 1 or the monic associate of p. If p | g, we are done; otherwise, if
p - g, we must have gcd(p, g) = 1, and by the previous theorem, we conclude that
p | h. 2
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Now to prove the uniqueness part of Theorem 16.11. Suppose we have

p1 · · · pr = q1 · · · qs,

where p1, . . . , pr and q1, . . . , qs are monic irreducible polynomials (with duplicates
allowed among the pi’s and among the qj’s). If r = 0, we must have s = 0 and
we are done. Otherwise, as p1 divides the right-hand side, by inductively applying
Theorem 16.15, one sees that p1 is equal to qj for some j. We can cancel these
terms and proceed inductively (on r).

That completes the proof of Theorem 16.11.

Analogous to Theorem 1.11, we have:

Theorem 16.16. There are infinitely many monic irreducible polynomials in F [X ].

If F is infinite, then this theorem is true simply because there are infinitely
many monic, linear polynomials; in any case, one can easily prove this theorem
by mimicking the proof of Theorem 1.11 (as the reader may verify).

For a monic irreducible polynomial p, we may define the function νp, mapping
non-zero polynomials to non-negative integers, as follows: for every polynomial
f 6= 0, if f = peg, where p - g, then νp(f ) := e. We may then write the factoriza-
tion of f into irreducibles as

f = c
∏

p

pνp(f ),

where the product is over all monic irreducible polynomials p, with all but finitely
many of the terms in the product equal to 1.

Just as for integers, we may extend the domain of definition of νp to include 0,
defining νp(0) :=∞. For all polynomials g, h, we have

νp(g · h) = νp(g) + νp(h) for all p. (16.1)

From this, it follows that for all polynomials g, h, we have

h | g ⇐⇒ νp(h) ≤ νp(g) for all p, (16.2)

and

νp(gcd(g, h)) = min(νp(g), νp(h)) for all p. (16.3)

For g, h ∈ F [X ], a common multiple of g and h is a polynomial m such that
g | m and h | m; moreover, such an m is the least common multiple of g and h
if m is monic or zero, and m divides all common multiples of g and h. In light of
Theorem 16.11, it is clear that the least common multiple exists and is unique, and
we denote the least common multiple of g and h by lcm(a, b). Note that as we have
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defined it, lcm(g, 0) = 0, and that when both g and h are non-zero, lcm(g, h) is
the unique monic polynomial of minimal degree that is divisible by both g and h.
Also, for all g, h ∈ F [X ], we have

νp(lcm(g, h)) = max(νp(g), νp(h)) for all p. (16.4)

Just as in §1.3, the notions of greatest common divisor and least common multi-
ple generalize naturally from two to any number of polynomials. We also say that
a family of polynomials {gi}ki=1 is pairwise relatively prime if gcd(gi, gj) = 1 for
all indices i, j with i 6= j.

Also just as in §1.3, any rational function g/h ∈ F (X ) can be expressed as a
fraction g0/h0 in lowest terms—that is, g/h = g0/h0 and gcd(g0, h0) = 1—and
this representation is unique up to multiplication by units.

Many of the exercises in Chapter 1 carry over naturally to polynomials — the
reader is encouraged to look over all of the exercises in that chapter, determining
which have natural polynomial analogs, and work some of these out.

Example 16.12. Let f ∈ F [X ] be a polynomial of degree 2 or 3. Then it is easy to
see that f is irreducible if and only if f has no roots in F . Indeed, if f is reducible,
then it must have a factor of degree 1, which we can assume is monic; thus, we can
write f = (X − x)g, where x ∈ F and g ∈ F [X ], and so f (x) = (x − x)g(x) = 0.
Conversely, if x ∈ F is a root of f , then X − x divides f (see Theorem 7.12), and
so f is reducible. 2

Example 16.13. As a special case of the previous example, consider the poly-
nomials f := X 2 − 2 ∈ Q[X ] and g := X 3 − 2 ∈ Q[X ]. We claim that as
polynomials over Q, f and g are irreducible. Indeed, neither of them have integer
roots, and so neither of them have rational roots (see Exercise 1.26); therefore, they
are irreducible. 2

Example 16.14. In discussing the factorization of polynomials, one must be clear
about the coefficient domain. Indeed, if we view f and g in the previous example
as polynomials over R, then they factor into irreducibles as

f = (X −
√

2)(X +
√

2), g = (X − 3√2)(X 2 + 3√2X + 3√4),

and over C, g factors even further, as

g = (X − 3√2)
(

X − 3√2(1 + i
√

3)/2
)(

X − 3√2(1 − i
√

3)/2
)

. 2

EXERCISE 16.6. Suppose f =
∑`
i=0 ciX

i is an irreducible polynomial over F ,
where c0 6= 0 and c` 6= 0. Show that the “reverse” polynomial f̃ :=

∑`
i=0 c`−iX

i is
also irreducible.
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16.4 Polynomial congruences
Throughout this section, F denotes a field.

Many of the results from Chapter 2 on congruences modulo a positive inte-
ger n carry over almost verbatim to congruences modulo a non-zero polynomial
f ∈ F [X ]. We state these results here—the proofs of these results are essentially
the same as in the integer case, and as such, are omitted for the most part.

Because of the division with remainder property for polynomials, we have the
analog of Theorem 2.4:

Theorem 16.17. Let g, f ∈ F [X ], where f 6= 0. Then there exists a unique
z ∈ F [X ] such that z ≡ g (mod f ) and deg(z) < deg(f ), namely, z := g mod f .

Corresponding to Theorem 2.5, we have:

Theorem 16.18. Let g, f ∈ F [X ] with f 6= 0, and let d := gcd(g, f ).

(i) For every h ∈ F [X ], the congruence gz ≡ h (mod f ) has a solution
z ∈ F [X ] if and only if d | h.

(ii) For every z ∈ F [X ], we have gz ≡ 0 (mod f ) if and only if z ≡ 0
(mod f/d).

(iii) For all z, z′ ∈ F [X ], we have gz ≡ gz′ (mod f ) if and only if z ≡ z′

(mod f/d).

Let g, f ∈ F [X ] with f 6= 0. Part (iii) of Theorem 16.18 gives us a cancellation
law for polynomial congruences:

if gcd(g, f ) = 1 and gz ≡ gz′ (mod f ), then z ≡ z′ (mod f ).

We say that z ∈ F [X ] is a multiplicative inverse of g modulo f if gz ≡ 1 (mod f ).
Part (i) of Theorem 16.18 says that g has a multiplicative inverse modulo f if
and only if gcd(g, f ) = 1. Moreover, part (iii) of Theorem 16.18 says that the
multiplicative inverse of g, if it exists, is uniquely determined modulo f .

As for integers, we may generalize the “mod” operation as follows. Suppose
g, h, f ∈ F [X ], with f 6= 0, g 6= 0, and gcd(g, f ) = 1. If s is the rational function
h/g ∈ F (X ), then we define s mod f to be the unique polynomial z ∈ F [X ]
satisfying

gz ≡ h (mod f ) and deg(z) < deg(f ).

With this notation, we can simply write g−1 mod f to denote the unique multi-
plicative inverse of g modulo f of degree less than deg(f ).

Corresponding to Theorem 2.6, we have:
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Theorem 16.19 (Chinese remainder theorem). Let {fi}ki=1 be a pairwise rela-
tively prime family of non-zero polynomials in F [X ], and let g1, . . . , gk be arbi-
trary polynomials in F [X ]. Then there exists a solution g ∈ F [X ] to the system of
congruences

g ≡ gi (mod fi) (i = 1, . . . , k).

Moreover, any g′ ∈ F [X ] is a solution to this system of congruences if and only if
g ≡ g′ (mod f ), where f :=

∏k
i=1 fi.

Let us recall the formula for the solution g (see proof of Theorem 2.6). We have

g :=
k
∑

i=1

giei,

where

ei := f∗i ti, f∗i := f/fi, ti := (f∗i )−1 mod fi (i = 1, . . . , k).

Now, let us consider the special case of the Chinese remainder theorem where
fi = X − xi with xi ∈ F , and gi = yi ∈ F , for i = 1, . . . , k. The condition that
{fi}ki=1 is pairwise relatively prime is equivalent to the condition that the xi’s are
distinct. Observe that a polynomial g ∈ F [X ] satisfies the system of congruences

g ≡ gi (mod fi) (i = 1, . . . , k)

if and only if

g(xi) = yi (i = 1, . . . , k).

Moreover, we have f∗i =
∏

j 6=i(X − xj) and ti = 1/
∏

j 6=i(xi − xj) ∈ F . So we get

g =
k
∑

i=1

yi

∏

j 6=i(X − xj)
∏

j 6=i(xi − xj)
.

The reader will recognize this as the usual Lagrange interpolation formula (see
Theorem 7.15). Thus, the Chinese remainder theorem for polynomials includes
Lagrange interpolation as a special case.

Polynomial quotient algebras. Let f ∈ F [X ] be a polynomial of degree ` ≥ 0,
and consider the quotient ring E := F [X ]/(f ). As discussed in Example 16.7, we
may naturally view E as an F -algebra. Moreover, if we set ξ := [X ]f ∈ E, then
E = F [ξ], and viewing E as a vector space over F , we see that {ξi−1}`i=1 is a basis
for E.

Now suppose α ∈ E. We have α = [g]f = g(ξ) for some g ∈ F [X ], and from



16.4 Polynomial congruences 437

the above discussion about polynomial congruences, we see that α is a unit if and
only if gcd(g, f ) = 1.

If `= 0, thenE is trivial. If f is irreducible, thenE is a field, since g 6≡ 0 (mod f )
implies gcd(g, f ) = 1. If f is reducible, then E is not a field, and indeed, not even
an integral domain: for any non-trivial factor g ∈ F [X ] of f , [g]f ∈ E is a zero
divisor.

The Chinese remainder theorem for polynomials also has a more algebraic inter-
pretation. Namely, if {fi}ki=1 is a pairwise relatively prime family of non-zero
polynomials in F [X ], and f :=

∏k
i=1 fi, then the map

θ : F [X ]/(f ) → F [X ]/(f1) × · · · × F [X ]/(fk)

[g]f 7→ ([g]f1 , . . . , [g]fk )

is unambiguously defined, and is in fact an F -algebra isomorphism. This map may
be seen as a generalization of the ring isomorphism ρ discussed in Example 7.54.

Example 16.15. The polynomial X 2+1 is irreducible over R, since if it were not, it
would have a root in R (see Example 16.12), which is clearly impossible, since −1
is not the square of any real number. It follows immediately that C = R[X ]/(X 2+1)
is a field, without having to explicitly calculate a formula for the inverse of a non-
zero complex number. 2

Example 16.16. Consider the polynomial f := X 4 + X 3 + 1 over Z2. We claim
that f is irreducible. It suffices to show that f has no irreducible factors of degree
1 or 2.

If f had a factor of degree 1, then it would have a root; however, f (0) = 0+ 0+
1 = 1 and f (1) = 1 + 1 + 1 = 1. So f has no factors of degree 1.

Does f have a factor of degree 2? The polynomials of degree 2 are X 2, X 2 + X ,
X 2 + 1, and X 2 + X + 1. The first and second of these polynomials are divisible
by X , and hence not irreducible, while the third has a 1 as a root, and hence is also
not irreducible. The last polynomial, X 2 + X + 1, has no roots, and hence is the
only irreducible polynomial of degree 2 over Z2. So now we may conclude that if
f were not irreducible, it would have to be equal to

(X 2 + X + 1)2 = X 4 + 2X 3 + 3X 2 + 2X + 1 = X 4 + X 2 + 1,

which it is not.
Thus, E := Z2[X ]/(f ) is a field with 24 = 16 elements. We may think of ele-

mentsE as bit strings of length 4, where the rule for addition is bit-wise “exclusive-
or.” The rule for multiplication is more complicated: to multiply two given bit
strings, we interpret the bits as coefficients of polynomials (with the left-most bit
the coefficient of X 3), multiply the polynomials, reduce the product modulo f , and
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write down the bit string corresponding to the reduced product polynomial. For
example, to multiply 1001 and 0011, we compute

(X 3 + 1)(X + 1) = X 4 + X 3 + X + 1,

and

(X 4 + X 3 + X + 1) mod (X 4 + X 3 + 1) = X .

Hence, the product of 1001 and 0011 is 0010.
Theorem 7.29 says that E∗ is a cyclic group. Indeed, the element ξ := 0010

(i.e., ξ = [X ]f ) is a generator for E∗, as the following table of powers shows:

i ξi i ξi

1 0010 8 1110
2 0100 9 0101
3 1000 10 1010
4 1001 11 1101
5 1011 12 0011
6 1111 13 0110
7 0111 14 1100

15 0001

Such a table of powers is sometimes useful for computations in small finite fields
such as this one. Given α, β ∈ E∗, we can compute αβ by obtaining (by table
lookup) i, j such that α = ξi and β = ξj, computing k := (i + j) mod 15, and then
obtaining αβ = ξk (again by table lookup). 2

16.5 Minimal polynomials
Throughout this section, F denotes a field.

Suppose that E is an arbitrary F -algebra, and let α be an element of E. Consider
the polynomial evaluation map

ρ : F [X ]→ E

g 7→ g(α),

which is an F -algebra homomorphism. By definition, the image of ρ is F [α]. The
kernel of ρ is an ideal of F [X ], and since every ideal of F [X ] is principal, it follows
that Ker ρ = φF [X ] for some polynomial φ ∈ F [X ]; moreover, we can make the
choice of φ unique by insisting that it is monic or zero. The polynomial φ is called
the minimal polynomial of α (over F ).

On the one hand, suppose φ 6= 0. Since any polynomial that is zero at α is a
polynomial multiple of φ, we see that φ is the unique monic polynomial of smallest



16.5 Minimal polynomials 439

degree that vanishes at α. Moreover, the first isomorphism theorems for rings and
modules tell us that F [α] is isomorphic (as an F -algebra) to F [X ]/(φ), via the
isomorphism

ρ : F [X ]/(φ) → F [α]

[g]φ 7→ g(α).

Under this isomorphism, [X ]φ ∈ F [X ]/(φ) corresponds to α ∈ F [α], and we see
that {αi−1}mi=1 is a basis for F [α] over F , where m = deg(φ). In particular, every
element of F [α] can be written uniquely as

∑m
i=1 ciα

i−1, where c1, . . . , cm ∈ F .
On the other hand, suppose φ = 0. This means that no non-zero polynomial van-

ishes at α. Also, it means that the map ρ is injective, and hence F [α] is isomorphic
(as an F -algebra) to F [X ]; in particular, F [α] is not finitely generated as a vector
space over F .

Note that if α ∈ E has a minimal polynomial φ 6= 0, then deg(φ) > 0, unless E
is trivial (i.e., 1E = 0E ), in which case φ = 1.

Example 16.17. Consider the real numbers
√

2 and 3√2.
We claim that X 2 − 2 is the minimal polynomial of

√
2 over Q. To see this, first

observe that
√

2 is a root of X 2 − 2. Thus, the minimal polynomial of
√

2 divides
X 2−2. However, as we saw in Example 16.13, the polynomial X 2−2 is irreducible
over Q, and hence must be equal to the minimal polynomial of

√
2 over Q.

A similar argument shows that X 3 − 2 is the minimal polynomial of 3√2 over Q.
We also see that Q[

√
2] is isomorphic (as a Q-algebra) to Q[X ]/(X 2 − 2), and

since X 2 − 2 is irreducible, it follows that the ring Q[
√

2] is actually a field. As a
vector space over Q, Q[

√
2] has dimension 2, and every element of Q[

√
2] may be

written uniquely as a + b
√

2 for a, b ∈ Q. Indeed, for all a, b ∈ Q, not both zero,
the multiplicative inverse of a + b

√
2 is (a/c) + (b/c)

√
2, where c := a2 − 2b2.

Similarly, Q[ 3√2] is a field and has dimension 3 as a vector space over Q, and
every element of Q[ 3√2] may be written uniquely as a+b 3√2+c 3√4 for a, b, c ∈ Q. 2

A simple but important fact is the following:

Theorem 16.20. Suppose E is an F -algebra, and that as an F -vector space, E
has finite dimension n. Then every α ∈ E has a non-zero minimal polynomial of
degree at most n.

Proof. Indeed, the family of elements

1E , α, . . . , αn

must be linearly dependent (as must any family of n+ 1 elements of a vector space
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of dimension n), and hence there exist c0, . . . , cn ∈ F , not all zero, such that

c01E + c1α + · · · + cnαn = 0E ,

and therefore, the non-zero polynomial f :=
∑

i ciX
i vanishes at α. 2

Example 16.18. Let f ∈ F [X ] be a monic polynomial of degree `, and consider
the F -algebra E := F [X ]/(f ) = F [ξ], where ξ := [X ]f ∈ E. Clearly, the minimal
polynomial of ξ over F is f . Moreover, as a vector space over F , E has dimension
`, with {ξi−1}`i=1 being a basis. Therefore, every α ∈ E has a non-zero minimal
polynomial of degree at most `. 2

EXERCISE 16.7. In the field E in Example 16.16, what is the minimal polynomial
of 1011 over Z2?

EXERCISE 16.8. Let ρ : E → E ′ be an F -algebra homomorphism, let α ∈ E, let
φ be the minimal polynomial of α over F , and let φ′ be the minimal polynomial of
ρ(α) over F . Show that φ′ | φ, and that φ′ = φ if ρ is injective.

EXERCISE 16.9. Show that if the factorization of f over F [X ] into monic irre-
ducibles is f = f

e1
1 · · · f

er
r , and if α = [h]f ∈ F [X ]/(f ), then the minimal polyno-

mial φ of α over F is lcm(φ1, . . . ,φr), where each φi is the minimal polynomial of
[h]feii ∈ F [X ]/(f eii ) over F .

16.6 General properties of extension fields
We now discuss a few general notions related to extension fields. These are all quite
simple applications of the theory developed so far. Recall that if F andE are fields,
with F being a subring of E, then F is called a subfield of E, and E is called an
extension field of F . As usual, we shall blur the distinction between a subring and
a natural embedding; that is, if τ : F → E is a natural embedding, we shall simply
identify elements of F with their images in E under τ, and in so doing, we may
view E as an extension field of F . Usually, the map τ will be clear from context;
for example, if E = F [X ]/(f ) for some irreducible polynomial f ∈ F [X ], then
we shall simply say that E is an extension field of F , although strictly speaking, F
is embedded in E via the map that sends c ∈ F to [c]f ∈ E.

We start with some definitions. Let E be an extension field of a field F . Then E
is an F -algebra via inclusion, and in particular, an F -vector space. If E is a finite
dimensional F -vector space, then we say that E is a finite extension of F , and
dimF (E) is called the degree (over F ) of the extension, and is denoted (E : F );
otherwise, we say that E is an infinite extension of F .
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An element α ∈ E is called algebraic over F if there exists a non-zero polyno-
mial g ∈ F [X ] such that g(α) = 0, and in this case, we define the degree of α (over
F ) to be the degree of its minimal polynomial over F (see §16.5); otherwise, α is
called transcendental over F . If all elements of E are algebraic over F , then we
call E an algebraic extension of F .

Suppose E is an extension field of a field F . For α ∈ E, we define

F (α) := {g(α)/h(α) : g, h ∈ F [X ], h(α) 6= 0}.

It is easy to see that F (α) is a subfield of E, and indeed, it is the smallest subfield
of E containing F and α. Clearly, the ring F [α] = {g(α) : g ∈ F [X ]}, which is the
smallest subring of E containing F and α, is a subring of F (α). We derive some
basic properties of F (α) and F [α]. The analysis naturally breaks down into two
cases, depending on whether α is algebraic or transcendental over F .

On the one hand, suppose α is algebraic over F . Let φ be the minimal polyno-
mial of α over F , so that deg(φ) > 0, and the quotient ring F [X ]/(φ) is isomorphic
(as an F -algebra) to the ring F [α] (see §16.5). Since F [α] is a subring of a field,
it must be an integral domain, which implies that F [X ]/(φ) is an integral domain,
and so φ is irreducible. This in turn implies that F [X ]/(φ) is a field, and so F [α] is
not just a subring of E, it is a subfield of E. Since F [α] is itself already a subfield
of E containing F and α, it follows that F (α) = F [α]. Moreover, F [α] is a finite
extension of F ; indeed (F [α] : F ) = deg(φ) = the degree of α over F , and the
elements 1, α, . . . , αm−1, where m := deg(φ), form a basis for F [α] over F .

On the other hand, suppose that α is transcendental over F . In this case, the
minimal polynomial of α over F is the zero polynomial, and the ring F [α] is iso-
morphic (as an F -algebra) to the ring F [X ] (see §16.5), which is definitely not a
field. But consider the “rational function evaluation map” that sends g/h ∈ F (X )
to g(α)/h(α) ∈ F (α). Since no non-zero polynomial over F vanishes at α, it is
easy to see that this map is well defined, and is in fact an F -algebra isomorphism.
Thus, we see that F (α) is isomorphic (as an F -algebra) to F (X ). It is also clear
that F (α) is an infinite extension of F .

Let us summarize the above discussion in the following theorem:

Theorem 16.21. Let E be an extension field of a field F .

(i) If α ∈ E is algebraic over F , then F (α) = F [α], and F [α] is isomorphic
(as an F -algebra) to F [X ]/(φ), where φ is the minimal polynomial of α
over F , which is irreducible; moreover, F [α] is a finite extension of F ,
and (F [α] : F ) = deg(φ) = the degree of α over F , and the elements
1, α, . . . , αm−1, where m := deg(φ), form a basis for F [α] over F .

(ii) If α ∈ E is transcendental over F , then F (α) is isomorphic (as an F -
algebra) to the rational function field F (X ), while the subring F [α] is
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isomorphic (as an F -algebra) to the ring of polynomials F [X ]; moreover,
F (α) is an infinite extension of F .

Suppose E is an extension field of a field K, which itself is an extension of a
field F . Then E is also an extension field of F . The following theorem examines
the relation between the degrees of these extensions, in the case where E is a finite
extension of K, and K is a finite extension of F . The proof is a simple calculation,
which we leave to the reader to verify.

Theorem 16.22. Suppose E is a finite extension of a field K, with a basis {βj}mj=1
over K, and K is a finite extension of F , with a basis {αi}ni=1 over F . Then the
elements

αiβj (i = 1, . . . , n; j = 1, . . . ,m)

form a basis for E over F . In particular, E is a finite extension of F and

(E : F ) = (E : K)(K : F ).

Now suppose that E is a finite extension of a field F . Let K be an intermediate
field, that is, a subfield ofE containing F . Then evidently, E is a finite extension of
K (since any basis for E over F also spans E over K), and K is a finite extension
of F (since as F -vector spaces, K is a subspace of E). The previous theorem then
implies that (E : F ) = (E : K)(K : F ). We have proved:

Theorem 16.23. If E is a finite extension of a field F , and K is a subfield of E
containing F , then E is a finite extension of K, K is a finite extension of F , and
(E : F ) = (E : K)(K : F ).

Again, suppose that E is a finite extension of a field F . Theorem 16.20 implies
that E is algebraic over F , and indeed, that each element of E has degree over F
bounded by (E : F ). However, we can say a bit more about these degrees. Suppose
α ∈ E. Then the degree of α over F is equal to (F [α] : F ), and by the previous
theorem, applied to K := F [α], we have (E : F ) = (E : F [α])(F [α] : F ). In
particular, the degree of α over F divides (E : F ). We have proved:

Theorem 16.24. If E is a finite extension of a field F , then it is an algebraic
extension, and for each α ∈ E, the degree of α over F divides (E : F ).

Example 16.19. Continuing with Example 16.17, we see that the real numbers
√

2
and 3√2 are algebraic over Q. The fields Q[

√
2] and Q[ 3√2] are extension fields of

Q, where (Q[
√

2] : Q) = 2 = the degree of
√

2 over Q, and (Q[ 3√2] : Q) = 3 =
the degree of 3√2 over Q. As both of these fields are finite extensions of Q, they
are algebraic extensions as well. Since their degrees over Q are prime numbers,
it follows that they have no subfields other than themselves and Q. In particular,
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if α ∈ Q[
√

2] \ Q, then Q[α] = Q[
√

2]. Similarly, if α ∈ Q[ 3√2] \ Q, then
Q[α] = Q[ 3√2]. 2

Example 16.20. Continuing with Example 16.18, suppose f ∈ F [X ] is a monic
irreducible polynomial of degree `, so that E := F [X ]/(f ) = F [ξ], where
ξ := [X ]f ∈ E, is an extension field of F . The element ξ is algebraic of degree `
over F . Moreover, E is a finite extension of F , with (E : F ) = `; in particular, E
is an algebraic extension of F , and for each α ∈ E, the degree of α over F divides
`. 2

As we have seen in Example 16.14, an irreducible polynomial over a field may
be reducible when viewed as a polynomial over an extension field. A splitting
field is a finite extension of the coefficient field in which a given polynomial splits
completely into linear factors. As the next theorem shows, splitting fields always
exist.

Theorem 16.25. Let F be a field, and f ∈ F [X ] a non-zero polynomial of degree
n. Then there exists a finite extension E of F over which f factors as

f = c(X − α1)(X − α2) · · · (X − αn),

where c ∈ F and α1, . . . , αn ∈ E.

Proof. We may assume that f is monic. We prove the existence of E by induction
on the degree n of f . If n = 0, then the theorem is trivially true. Otherwise, let h be
an irreducible factor of f , and set K := F [X ]/(h), so that ξ := [X ]h ∈ K is a root
of h, and hence of f . So over K, which is a finite extension of F , the polynomial
f factors as

f = (X − ξ)g,

where g ∈ K[X ] is a monic polynomial of degree n − 1. Applying the induction
hypothesis, there exists a finite extension E of K over which g splits into linear
factors. Thus, over E, f splits into linear factors, and by Theorem 16.22, E is a
finite extension of F . 2

EXERCISE 16.10. In the field E in Example 16.16, find all the elements of degree
2 over Z2.

EXERCISE 16.11. Let E be an extension field of a field F , and let α1, . . . , αn ∈ E
be algebraic over F . Show that the ring F [α1, . . . , αn] (see Example 7.45) is in fact
a field, and that F [α1, . . . , αn] is a finite (and hence algebraic) extension of F .
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EXERCISE 16.12. Consider the real numbers
√

2 and 3√2. Show that

(Q[
√

2, 3√2] : Q) = (Q[
√

2 + 3√2] : Q) = 6.

EXERCISE 16.13. Consider the real numbers
√

2 and
√

3. Show that

(Q[
√

2,
√

3] : Q) = (Q[
√

2 +
√

3] : Q) = 4.

EXERCISE 16.14. Show that if E is an algebraic extension of K, and K is an
algebraic extension of F , then E is an algebraic extension of F .

EXERCISE 16.15. Let E be an extension of F . Show that the set of all elements
of E that are algebraic over F is a subfield of E containing F .

EXERCISE 16.16. Consider a field F and its field of rational functions F (X ). Let
α ∈ F (X ) \ F . Show that X is algebraic over F (α), and that α is transcendental
over F .

EXERCISE 16.17. Let E be an extension field of a field F . Suppose α ∈ E is
transcendental over F , and that E is algebraic over F (α). Show that for every
β ∈ E, β is transcendental over F if and only if E is algebraic over F (β).

16.7 Formal derivatives
Throughout this section, R denotes a ring.

Consider a polynomial g ∈ R[X ]. If Y is another indeterminate, we may evaluate
g at X + Y , and collecting monomials of like degree in Y , we may write

g
(

X + Y
)

= g0 + g1Y + g2Y
2 + · · · (16.5)

where gi ∈ R[X ] for i = 0, 1, 2, . . . . Evidently, g0 = g (just substitute 0 for Y in
(16.5)), and we may write

g
(

X + Y
)

≡ g + g1Y (mod Y 2). (16.6)

We define the formal derivative of g, denoted D(g), to be the unique polyno-
mial g1 ∈ R[X ] satisfying (16.6). We stress that unlike the “analytical” notion
of derivative from calculus, which is defined in terms of limits, this definition is
purely “symbolic.” Nevertheless, some of the usual rules for derivatives still hold:

Theorem 16.26. We have:

(i) D(c) = 0 for all c ∈ R;

(ii) D(X ) = 1;

(iii) D(g + h) = D(g) + D(h) for all g, h ∈ R[X ];

(iv) D(gh) = D(g)h + gD(h) for all g, h ∈ R[X ].
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Proof. Parts (i) and (ii) are immediate from the definition. Parts (iii) and (iv)
follow from the definition by a simple calculation. Suppose

g
(

X + Y
)

≡ g + g1Y (mod Y 2) and h
(

X + Y
)

≡ h + h1Y (mod Y 2)

where g1 = D(g) and h1 = D(h). Then

(g + h)
(

X + Y
)

≡ g
(

X + Y
)

+ h
(

X + Y
)

≡ (g + h) + (g1 + h1)Y (mod Y 2),

and

(gh)
(

X + Y
)

≡ g
(

X + Y
)

h
(

X + Y
)

≡ gh + (g1h + gh1)Y (mod Y 2). 2

Combining parts (i) and (iv) of this theorem, we see that D(cg) = cD(g) for
all c ∈ R and g ∈ R[X ]. This fact can also be easily derived directly from the
definition of the derivative.

Combining parts (ii) and (iv) of this theorem, together with a simple induction
argument, we see that D(X n) = nX n−1 for all positive integers n. This fact can also
be easily derived directly from the definition of the derivative by considering the
binomial expansion of (X + Y )n.

Combining part (iii) of this theorem and the observations in the previous two
paragraphs, we see that for any polynomial g =

∑k
i=0 aiX

i ∈ R[X ], we have

D(g) =
k
∑

i=1

iaiX
i−1, (16.7)

which agrees with the usual formula for the derivative of a polynomial.

The notion of a formal derivative can be generalized to multi-variate polynomi-
als. Let g ∈ R[X1, . . . ,Xn]. For any i = 1, . . . , n, we can view g as a polynomial in
the variable X i, whose coefficients are elements of R[X1, . . . ,X i−1,X i+1, . . . ,Xn].
Then if we formally differentiate with respect to the variable X i, we obtain the
formal “partial” derivative DX i (g).

EXERCISE 16.18. Show that for g1, . . . , gn ∈ R[X ], we have

D
(

∏

i

gi

)

=
∑

i

D(gi)
∏

j 6=i

gj

and that for g ∈ R[X ], and n ≥ 1, we have

D(gn) = ngn−1D(g).

EXERCISE 16.19. Prove the “chain rule” for formal derivatives: if g, h ∈ R[X ]
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and f = g(h) ∈ R[X ], then D(f ) = D(g)(h) · D(h); more generally, if g ∈
R[X1, ...,Xn], and h1, ..., hn ∈ R[X ], and f = g(h1, ..., hn) ∈ R[X ], then

DX (f ) =
n
∑

i=1

DX i (g)(h1, ..., hn)DX (hi).

EXERCISE 16.20. Let g ∈ R[X ], and let x ∈ R be a root of g. Show that x is a
multiple root of g if and only if x is also a root of D(g) (see Exercise 7.18).

EXERCISE 16.21. Let g ∈ R[X ] with deg(g) = k ≥ 0, and let x ∈ R. Show that
if we evaluate g at X + x, writing

g
(

X + x
)

=
k
∑

i=0

biX
i,

with b0, . . . , bk ∈ R, then we have

i! · bi = (Di(g))(x) for i = 0, . . . , k.

EXERCISE 16.22. Suppose p is a prime, g ∈ Z[X ], and x ∈ Z, such that
g(x) ≡ 0 (mod p) and D(g)(x) 6≡ 0 (mod p). Show that for every positive integer
e, there exists an integer x̂ such that g(x̂) ≡ 0 (mod pe), and give an efficient
procedure to compute such an x̂, given p, g, x, and e. Hint: mimic the “lifting”
procedure discussed in §12.5.2.

16.8 Formal power series and Laurent series
We discuss generalizations of polynomials that allow an infinite number of non-
zero coefficients. Although we are mainly interested in the case where the coeffi-
cients come from a field F , we develop the basic theory for general rings R.

16.8.1 Formal power series
The ring R[[X ]] of formal power series over R consists of all formal expressions
of the form

g = a0 + a1X + a2X
2 + · · · ,

where a0, a1, a2, . . . ∈ R. Unlike ordinary polynomials, we allow an infinite num-
ber of non-zero coefficients. We may write such a formal power series as

g =
∞
∑

i=0

aiX
i.
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Formally, such a formal power series is an infinite sequence {ai}∞i=0, and the rules
for addition and multiplication are exactly the same as for polynomials. Indeed,
the formulas (7.2) and (7.3) in §7.2 for addition and multiplication may be applied
directly — all of the relevant sums are finite, and so everything is well defined.
We leave it to the reader to verify that with addition and multiplication so defined,
R[[X ]] indeed forms a ring. We shall not attempt to interpret a formal power series
as a function, and therefore, “convergence” issues shall simply not arise.

Clearly, R[[X ]] contains R[X ] as a subring. Let us consider the group of units of
R[[X ]].

Theorem 16.27. Let g =
∑∞
i=0 aiX

i ∈ R[[X ]]. Then g ∈ (R[[X ]])∗ if and only if
a0 ∈ R∗.

Proof. If a0 is not a unit, then it is clear that g is not a unit, since the constant term
of a product of formal power series is equal to the product of the constant terms.

Conversely, if a0 is a unit, we show how to define the coefficients of the inverse
h =

∑∞
i=0 biX

i of g. Let f = gh =
∑∞
i=0 ciX

i. We want f = 1, which means that
c0 = 1 and ci = 0 for all i > 0. Now, c0 = a0b0, so we set b0 := a−1

0 . Next, we have
c1 = a0b1+a1b0, so we set b1 := −a1b0·a−1

0 . Next, we have c2 = a0b2+a1b1+a2b0,
so we set b2 := −(a1b1 + a2b0) · a−1

0 . Continuing in this way, we see that if we
define bi := −(a1bi−1 + · · · + aib0) · a−1

0 for i ≥ 1, then gh = 1. 2

Example 16.21. In the ringR[[X ]], the multiplicative inverse of 1−X is
∑∞
i=0 X

i. 2

EXERCISE 16.23. Let F be a field. Show that every non-zero ideal of F [[X ]] is of
the form (Xm) for some uniquely determined integer m ≥ 0.

16.8.2 Formal Laurent series
One may generalize formal power series to allow a finite number of negative pow-
ers of X . The ring R((X )) of formal Laurent series over R consists of all formal
expressions of the form

g = amX
m + am+1X

m+1 + · · · ,

where m is allowed to be any integer (possibly negative), and am, am+1, . . . ∈ R.
Thus, elements of R((X )) may have an infinite number of terms involving positive
powers of X , but only a finite number of terms involving negative powers of X . We
may write such a formal Laurent series as

g =
∞
∑

i=m

aiX
i.



448 More rings

Formally, such a formal Laurent series is a doubly infinite sequence {ai}∞i=−∞,
with the restriction that for some integer m, we have ai = 0 for all i < m. We may
again use the usual formulas (7.2) and (7.3) to define addition and multiplication
(where the indices i, j, and k now range over all integers, not just the non-negative
integers). Note that while the sum in (7.3) has an infinite number of terms, only
finitely many of them are non-zero.

One may naturally view R[[X ]] as a subring of R((X )), and of course, R[X ] is a
subring of R[[X ]] and so also a subring of R((X )).

Theorem 16.28. If D is an integral domain, then D((X )) is an integral domain.

Proof. Let g =
∑∞
i=m aiX

i and h =
∑∞
i=n biX

i, where am 6= 0 and bn 6= 0. Then
gh =

∑∞
i=m+n ciX

i, where cm+n = ambn 6= 0. 2

Theorem 16.29. Let g ∈ R((X )), and suppose that g 6= 0 and g =
∑∞
i=m aiX

i with
am ∈ R∗. Then g has a multiplicative inverse in R((X )).

Proof. We can write g = Xmg′, where g′ is a formal power series whose constant
term is a unit, and hence there is a formal power series h such that g′h = 1. Thus,
X−mh is the multiplicative inverse of g in R((X )). 2

As an immediate corollary, we have:

Theorem 16.30. If F is a field, then F ((X )) is a field.

EXERCISE 16.24. Let F be a field. Show that F ((X )) is the field of fractions of
F [[X ]]; that is, there is no subfield E ( F ((X )) that contains F [[X ]].

16.8.3 Reversed Laurent series
While formal Laurent series are useful in some situations, in many others, it is
more useful and natural to consider reversed Laurent series over R. These are
formal expressions of the form

g =
m
∑

i=−∞
aiX

i,

where am, am−1, . . . ∈ R. Thus, in a reversed Laurent series, we allow an infinite
number of terms involving negative powers of X , but only a finite number of terms
involving positive powers of X . Formally, such a reversed Laurent series is a doubly
infinite sequence {ai}∞i=−∞, with the restriction that for some integer m, we have
ai = 0 for all i > m. We may again use the usual formulas (7.2) and (7.3) to define
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addition and multiplication — and again, the sum in (7.3) has only finitely many
non-zero terms.

The ring of all reversed Laurent series is denoted R((X−1)), and as the notation
suggests, the map that sends X to X−1 (and acts as the identity on R) is an R-
algebra isomorphism of R((X )) with R((X−1)). Also, one may naturally view R[X ]
as a subring of R((X−1)).

For g =
∑m
i=−∞ aiX

i ∈ R((X−1)) with am 6= 0, let us define the degree of g,
denoted deg(g), to be the value m, and the leading coefficient of g, denoted lc(g),
to be the value am. As for ordinary polynomials, we define the degree of 0 to
be −∞, and the leading coefficient of 0 to be 0. Note that if g happens to be a
polynomial, then these definitions of degree and leading coefficient agree with that
for ordinary polynomials.

Theorem 16.31. For g, h ∈ R((X−1)), we have deg(gh) ≤ deg(g) + deg(h), where
equality holds unless both lc(g) and lc(h) are zero divisors. Furthermore, if h 6= 0
and lc(h) is a unit, then h is a unit, and we have deg(gh−1) = deg(g) − deg(h).

Proof. Exercise. 2

It is also natural to define a floor function for reversed Laurent series: for
g ∈ R((X−1)) with g =

∑m
i=−∞ aiX

i, we define

bgc :=
m
∑

i=0

aiX
i ∈ R[X ];

that is, we compute the floor function by simply throwing away all terms involving
negative powers of X .

Theorem 16.32. Let g, h ∈ R[X ] with h 6= 0 and lc(h) ∈ R∗, and using the
usual division with remainder property for polynomials, write g = hq + r, where
q, r ∈ R[X ] with deg(r) < deg(h). Let h−1 denote the multiplicative inverse of h
in R((X−1)). Then q = bgh−1c.

Proof. Multiplying the equation g = hq + r by h−1, we obtain gh−1 = q + rh−1,
and deg(rh−1) < 0, from which it follows that bgh−1c = q. 2

Let F be a field, so that F ((X−1)) is also field (this is immediate from Theo-
rem 16.31). Now, F ((X−1)) contains F [X ] as a subring, and hence contains (an
isomorphic copy of) the rational function field F (X ). Just as F (X ) corresponds
to the field of rational numbers, F ((X−1)) corresponds to the field real numbers.
Indeed, we can think of real numbers as decimal numbers with a finite number
of digits to the left of the decimal point and an infinite number to the right, and
reversed Laurent series have a similar “syntactic” structure. In many ways, this
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syntactic similarity between the real numbers and reversed Laurent series is more
than just superficial.

EXERCISE 16.25. Write down the rule for determining the multiplicative inverse
of an element of R((X−1)) whose leading coefficient is a unit in R.

EXERCISE 16.26. Let F be a field of characteristic other than 2. Show that a
non-zero g ∈ F ((X−1)) has a square-root in F ((X−1)) if and only if deg(g) is even
and lc(g) has a square-root in F .

EXERCISE 16.27. Let R be a ring, and let a ∈ R. Show that the multiplicative
inverse of X − a in R((X−1)) is

∑∞
j=1 a

j−1X−j.

EXERCISE 16.28. Let R be an arbitrary ring, let a1, . . . , a` ∈ R, and let

f := (X − a1)(X − a2) · · · (X − a`) ∈ R[X ].

For j ≥ 0, define the “power sum”

sj :=
∑̀

i=1

a
j
i .

Show that in the ring R((X−1)), we have

D(f )
f

=
∑̀

i=1

1
(X − ai)

=
∞
∑

j=1

sj−1X
−j,

where D(f ) is the formal derivative of f .

EXERCISE 16.29. Continuing with the previous exercise, derive Newton’s iden-
tities, which state that if f = X ` + c1X

`−1 + · · · + c`, with c1, . . . , c` ∈ R, then

s1 + c1 = 0

s2 + c1s1 + 2c2 = 0

s3 + c1s2 + c2s1 + 3c3 = 0
...

s` + c1s`−1 + · · · + c`−1s1 + `c` = 0

sj+` + c1sj+`−1 + · · · + c`−1sj+1 + c`sj = 0 (j ≥ 1).
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16.9 Unique factorization domains (∗)
As we have seen, both the ring of integers and the ring of polynomials over a field
enjoy a unique factorization property. These are special cases of a more general
phenomenon, which we explore here.

Throughout this section, D denotes an integral domain.
We call a, b ∈ D associate if a = ub for some u ∈ D∗. Equivalently, a and b are

associate if and only if a | b and b | a (see part (i) of Theorem 7.4). A non-zero
element p ∈ D is called irreducible if it is not a unit, and all divisors of p are
associate to 1 or p. Equivalently, a non-zero, non-unit p ∈ D is irreducible if and
only if it cannot be expressed as p = ab where neither a nor b are units.

Definition 16.33. We call D a unique factorization domain (UFD) if

(i) every non-zero element of D that is not a unit can be written as a product
of irreducibles in D, and

(ii) such a factorization into irreducibles is unique up to associates and the order
in which the factors appear.

Another way to state part (ii) of the above definition is that if p1 · · · pr and
p′1 · · · p

′
s are two factorizations of some element as a product of irreducibles, then

r = s, and there exists a permutation π on the indices {1, . . . , r} such that pi and
p′π(i) are associate.

As we have seen, both Z and F [X ] are UFDs. In both of those cases, we chose
to single out a distinguished irreducible element among all those associate to any
given irreducible: for Z, we always chose positive primes, and for F [X ], we chose
monic irreducible polynomials. For any specific unique factorization domain D,
there may be such a natural choice, but in the general case, there will not be (but
see Exercise 16.30 below).

Example 16.22. Having already seen two examples of UFDs, it is perhaps a good
idea to look at an example of an integral domain that is not a UFD. Consider the
subring Z[

√
−3] of the complex numbers, which consists of all complex numbers

of the form a + b
√
−3, where a, b ∈ Z. As this is a subring of the field C, it is an

integral domain (one may also view Z[
√
−3] as the quotient ring Z[X ]/(X 2 + 3)).

Let us first determine the units in Z[
√
−3]. For a, b ∈ Z, we haveN (a+b

√
−3) =

a2 + 3b2, where N is the usual norm map on C (see Example 7.5). If α ∈ Z[
√
−3]

is a unit, then there exists α′ ∈ Z[
√
−3] such that αα′ = 1. Taking norms, we obtain

1 = N (1) = N (αα′) = N (α)N (α′).

Since the norm of an element of Z[
√
−3] is a non-negative integer, this implies that

N (α) = 1. If α = a + b
√
−3, with a, b ∈ Z, then N (α) = a2 + 3b2, and it is clear
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that N (α) = 1 if and only if α = ±1. We conclude that the only units in Z[
√
−3]

are ±1.
Now consider the following two factorizations of 4 in Z[

√
−3]:

4 = 2 · 2 = (1 +
√
−3)(1 −

√
−3). (16.8)

We claim that 2 is irreducible. For suppose, say, that 2 = αα′, for α, α′ ∈ Z[
√
−3],

with neither a unit. Taking norms, we have 4 = N (2) = N (α)N (α′), and therefore,
N (α) = N (α′) = 2—but this is impossible, since there are no integers a and b such
that a2 + 3b2 = 2. By the same reasoning, since N (1 +

√
−3) = N (1−

√
−3) = 4,

we see that 1 +
√
−3 and 1 −

√
−3 are both irreducible. Further, it is clear that 2 is

not associate to either 1 +
√
−3 or 1 −

√
−3, and so the two factorizations of 4 in

(16.8) are fundamentally different. 2

For a, b ∈ D, we call d ∈ D a common divisor of a and b if d | a and d | b;
moreover, we call such a d a greatest common divisor of a and b if all other
common divisors of a and b divide d. We say that a and b are relatively prime if
the only common divisors of a and b are units. It is immediate from the definition
of a greatest common divisor that it is unique, up to multiplication by units, if
it exists at all. Unlike in the case of Z and F [X ], in the general setting, greatest
common divisors need not exist; moreover, even when they do, we shall not attempt
to “normalize” greatest common divisors, and we shall speak only of “a” greatest
common divisor, rather than “the” greatest common divisor.

Just as for integers and polynomials, we can generalize the notion of a greatest
common divisor in an arbitrary integral domain D from two to any number of
elements of D, and we can also define a least common multiple of any number of
elements as well.

Although these greatest common divisors and least common multiples need not
exist in an arbitrary integral domain D, if D is a UFD, they will always exist.
The existence question easily reduces to the question of the existence of a greatest
common divisor and least common multiple of a and b, where a and b are non-zero
elements of D. So assuming that D is a UFD, we may write

a = u

r
∏

i=1

p
ei
i and b = v

r
∏

i=1

p
fi
i ,

where u and v are units, p1, . . . , pr are non-associate irreducibles, and e1, . . . , er
and f1, . . . ,fr are non-negative integers, and it is easily seen that

r
∏

i=1

p
min(ei,fi)
i
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is a greatest common divisor of a and b, while
r
∏

i=1

p
max(ei,fi)
i

is a least common multiple of a and b.
It is also evident that in a UFD D, if c | ab and c and a are relatively prime,

then c | b. In particular, if p is irreducible and p | ab, then p | a or p | b. This
is equivalent to saying that if p is irreducible, then the quotient ring D/pD is an
integral domain (and the ideal pD is a prime ideal — see Exercise 7.38). The
converse also holds:

Theorem 16.34. Suppose D satisfies part (i) of Definition 16.33, and that D/pD
is an integral domain for every irreducible p ∈ D. Then D is a UFD.

Proof. Exercise. 2

EXERCISE 16.30. (a) Show that the “is associate to” relation is an equivalence
relation.

(b) Consider an equivalence class C induced by the “is associate to” relation.
Show that if C contains an irreducible element, then all elements of C are
irreducible.

(c) Suppose that for every equivalence class C that contains irreducibles, we
choose one element ofC, and call it a distinguished irreducible. Show that
D is a UFD if and only if every non-zero element of D can be expressed as
up
e1
1 · · · p

er
r , where u is a unit, p1, . . . , pr are distinguished irreducibles, and

this expression is unique up to a reordering of the pi’s.

EXERCISE 16.31. Show that the ring Z[
√
−5] is not a UFD.

EXERCISE 16.32. Let D be a UFD and F its field of fractions. Show that

(a) every element x ∈ F can be expressed as x = a/b, where a, b ∈ D are
relatively prime, and

(b) that if x = a/b for a, b ∈ D relatively prime, then for any other a′, b′ ∈ D
with x = a′/b′, we have a′ = ca and b′ = cb for some c ∈ D.

EXERCISE 16.33. Let D be a UFD and let p ∈ D be irreducible. Show that there
is no prime ideal Q of D with {0D} ( Q ( pD (see Exercise 7.38).
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16.9.1 Unique factorization in Euclidean and principal ideal domains
Our proofs of the unique factorization property in both Z and F [X ] hinged on the
division with remainder property for these rings. This notion can be generalized,
as follows.

Definition 16.35. We say D is a Euclidean domain if there is a “size function” S
mapping the non-zero elements of D to the set of non-negative integers, such that
for all a, b ∈ D with b 6= 0, there exist q, r ∈ D, with the property that a = bq + r
and either r = 0 or S(r) < S(b).

Example 16.23. Both Z and F [X ] are Euclidean domains. In Z, we can take the
ordinary absolute value function |·| as a size function, and for F [X ], the function
deg(·) will do. 2

Example 16.24. Recall again the ring

Z[i] = {a + bi : a, b ∈ Z}

of Gaussian integers from Example 7.25. Let us show that this is a Euclidean
domain, using the usual norm map N on complex numbers (see Example 7.5) for
the size function. Let α, β ∈ Z[i], with β 6= 0. We want to show the existence
of κ, ρ ∈ Z[i] such that α = βκ + ρ, where N (ρ) < N (β). Suppose that in the
field C, we compute αβ−1 = r + si, where r, s ∈ Q. Let m, n be integers such that
|m− r| ≤ 1/2 and |n− s| ≤ 1/2—such integers m and n always exist, but may not
be uniquely determined. Set κ := m + ni ∈ Z[i] and ρ := α − βκ. Then we have

αβ−1 = κ + δ,

where δ ∈ C with N (δ) ≤ 1/4 + 1/4 = 1/2, and

ρ = α − βκ = α − β(αβ−1 − δ) = δβ,

and hence

N (ρ) = N (δβ) = N (δ)N (β) ≤
1
2
N (β). 2

Theorem 16.36. If D is a Euclidean domain and I is an ideal of D, then there
exists d ∈ D such that I = dD.

Proof. If I = {0}, then d = 0 does the job, so let us assume that I 6= {0}. Let d
be any non-zero element of I such that S(d) is minimal, where S is a size function
that makes D into a Euclidean domain. We claim that I = dD.

It will suffice to show that for all c ∈ I , we have d | c. Now, we know that
there exists q, r ∈ D such that c = dq + r, where either r = 0 or S(r) < S(d).
If r = 0, we are done; otherwise, r is a non-zero element of I with S(r) < S(d),
contradicting the minimality of S(d). 2
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Recall that an ideal of the form I = dD is called a principal ideal. If all ideals of
D are principal, then D is called a principal ideal domain (PID). Theorem 16.36
says that every Euclidean domain is a PID.

PIDs enjoy many nice properties, including:

Theorem 16.37. If D is a PID, then D is a UFD.

For the rings Z and F [X ], the proof of part (i) of Definition 16.33 was a quite
straightforward induction argument (as it also would be for any Euclidean domain).
For a general PID, however, this requires a different sort of argument. We begin
with the following fact:

Theorem 16.38. If D is a PID, and I1 ⊆ I2 ⊆ · · · are ideals of D, then there
exists an integer k such that Ik = Ik+1 = · · · .

Proof. Let I :=
⋃∞
i=1 Ii, which is an ideal of D (see Exercise 7.37). Thus, I = dD

for some d ∈ D. But d ∈
⋃∞
i=1 Ii implies that d ∈ Ik for some k, which shows that

I = dD ⊆ Ik. It follows that I = Ik = Ik+1 = · · · . 2

We can now prove the existence part of Theorem 16.37:

Theorem 16.39. If D is a PID, then every non-zero, non-unit element of D can
be expressed as a product of irreducibles in D.

Proof. Let c ∈ D, c 6= 0, and c not a unit. If c is irreducible, we are done.
Otherwise, we can write c = ab, where neither a nor b are units. As ideals, we
have cD ( aD and cD ( bD. If we continue this process recursively, building up
a “factorization tree” where c is at the root, a and b are the children of c, and so on,
then the recursion must stop, since any infinite path in the tree would give rise to
ideals

cD = I1 ( I2 ( · · · ,

contradicting Theorem 16.38. 2

The proof of the uniqueness part of Theorem 16.37 is essentially the same as for
proofs we gave for Z and F [X ].

Analogous to Theorems 1.7 and 16.13, we have:

Theorem 16.40. Let D be a PID. For all a, b ∈ D, there exists a greatest common
divisor d of a and b, and moreover, aD + bD = dD.

Proof. Exercise. 2

As an immediate consequence of the previous theorem, we see that in a PID D,
for all a, b ∈ D with greatest common divisor d, there exist s, t ∈ D such that
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as + bt = d; moreover, a, b ∈ D are relatively prime if and only if there exist
s, t ∈ D such that as + bt = 1.

Analogous to Theorems 1.9 and 16.14, we have:

Theorem 16.41. Let D be a PID. For all a, b, c ∈ D such that c | ab and a and c
are relatively prime, we have c | b.

Proof. Exercise. 2

Analogous to Theorems 1.10 and 16.15, we have:

Theorem 16.42. Let D be a PID. Let p ∈ D be irreducible, and let a, b ∈ D. Then
p | ab implies that p | a or p | b.

Proof. Exercise. 2

Theorem 16.37 now follows immediately from Theorems 16.39, 16.42, and
16.34.

EXERCISE 16.34. Show that Z[
√
−2] is a Euclidean domain.

EXERCISE 16.35. Consider the polynomial

X 3 − 1 = (X − 1)(X 2 + X + 1).

Over C, the roots of X 3 − 1 are 1, (−1 ±
√
−3)/2. Let ω := (−1 +

√
−3)/2, and

note that ω2 = −1 − ω = (−1 −
√
−3)/2, and ω3 = 1.

(a) Show that the ring Z[ω] consists of all elements of the form a + bω, where
a, b ∈ Z, and is an integral domain. This ring is called the ring of Eisenstein
integers.

(b) Show that the only units in Z[ω] are ±1, ±ω, and ±ω2.

(c) Show that Z[ω] is a Euclidean domain.

EXERCISE 16.36. Show that in a PID, all non-zero prime ideals are maximal (see
Exercise 7.38).

Recall that for a complex number α = a + bi, with a, b ∈ R, the norm of
α was defined as N (α) = αα = a2 + b2 (see Example 7.5). There are other
measures of the “size” of a complex number that are useful. The absolute value
of α is defined as |α| :=

√

N (α) =
√

a2 + b2. The max norm of α is defined as
M (α) := max{|a|, |b|}.

EXERCISE 16.37. Let α, β ∈ C. Prove the following statements:

(a) |αβ| = |α||β|;
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(b) |α + β| ≤ |α| + |β|;
(c) N (α + β) ≤ 2(N (α) +N (β));

(d) M (α) ≤ |α| ≤
√

2M (α).

The following exercises develop algorithms for computing with Gaussian inte-
gers. For computational purposes, we assume that a Gaussian integer α = a + bi,
with a, b ∈ Z, is represented as the pair of integers (a, b).

EXERCISE 16.38. Let α, β ∈ Z[i].

(a) Show how to compute M (α) in time O(len(M (α))) and N (α) in time
O(len(M (α))2).

(b) Show how to compute α + β in time O(len(M (α)) + len(M (β))).

(c) Show how to compute α · β in time O(len(M (α)) · len(M (β))).

(d) Assuming β 6= 0, show how to compute κ, ρ ∈ Z[i] such that α = βκ + ρ,
N (ρ) ≤ 1

2N (β), and N (κ) ≤ 4N (α)/N (β). Your algorithm should run
in time O(len(M (α)) · len(M (β))). Hint: see Example 16.24; also, to
achieve the stated running time bound, your algorithm should first test if
M (β) ≥ 2M (α).

EXERCISE 16.39. Using the division with remainder algorithm from part (d)
of the previous exercise, adapt the Euclidean algorithm for (ordinary) integers
to work with Gaussian integers. On inputs α, β ∈ Z[i], your algorithm should
compute a greatest common divisor δ ∈ Z[i] of α and β in time O(`3), where
` := max{len(M (α)), len(M (β))}.

EXERCISE 16.40. Extend the algorithm of the previous exercise, so that it com-
putes σ, τ ∈ Z[i] such that ασ + βτ = δ. Your algorithm should run in time O(`3),
and it should also be the case that len(M (σ)) and len(M (τ)) are O(`).

The algorithms in the previous two exercises for computing greatest common
divisors in Z[i] run in time cubic in the length of their input, whereas the corre-
sponding algorithms for Z run in time quadratic in the length of their input. This is
essentially because the running time of the algorithm for division with remainder
discussed in Exercise 16.38 is insensitive to the size of the quotient.

To get a quadratic-time algorithm for computing greatest common divisors in
Z[i], in the following exercises we shall develop an analog of the binary gcd algo-
rithm for Z.

EXERCISE 16.41. Let π := 1 + i ∈ Z[i].

(a) Show that 2 = ππ = −iπ2, that N (π) = 2, and that π is irreducible in Z[i].
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(b) Let α ∈ Z[i], with α = a + bi for a, b ∈ Z. Show that π | α if and only if
a − b is even, in which case

α

π
=
a + b

2
+
b − a

2
i.

(c) Show that for all α ∈ Z[i], we have α ≡ 0 (mod π) or α ≡ 1 (mod π).

(d) Show that the quotient ring Z[i]/πZ[i] is isomorphic to the ring Z2.

(e) Show that for all α ∈ Z[i] with α ≡ 1 (mod π), there exists a unique
ε ∈ {±1,±i} such that α ≡ ε (mod 2π).

(f) Show that for all α, β ∈ Z[i] with α ≡ β ≡ 1 (mod π), there exists a unique
ε ∈ {±1,±i} such that α ≡ εβ (mod 2π).

EXERCISE 16.42. We now present a “(1 + i)-ary gcd algorithm” for Gaussian
integers. Let π := 1 + i ∈ Z[i]. The algorithm takes non-zero α, β ∈ Z[i] as input,
and runs as follows:

ρ← α, ρ′ ← β, e← 0
while π | ρ and π | ρ′ do ρ← ρ/π, ρ′ ← ρ′/π, e← e + 1
repeat

while π | ρ do ρ ← ρ/π

while π | ρ′ do ρ′ ← ρ′/π

if M (ρ′) < M (ρ) then (ρ, ρ′) ← (ρ′, ρ)
determine ε ∈ {±1,±i} such that ρ′ ≡ ερ (mod 2π)

(∗) ρ′ ← ρ′ − ερ
until ρ′ = 0
δ ← πe · ρ
output δ

Show that this algorithm correctly computes a greatest common divisor of α
and β, and that it can be implemented so as to run in time O(`2), where ` :=
max(len(M (α)), len(M (β))). Hint: to analyze the running time, for i = 1, 2, . . . ,
let vi (respectively, v′i) denote the value of |ρρ′| just before (respectively, after) the
execution of the line marked (∗) in loop iteration i, and show that

v′i ≤ (1 +
√

2)vi and vi+1 ≤ v′i/2
√

2.

EXERCISE 16.43. Extend the algorithm of the previous exercise, so that it com-
putes σ, τ ∈ Z[i] such that ασ + βτ = δ. Your algorithm should run in time O(`2),
and it should also be the case that len(M (σ)) and len(M (τ)) are O(`). Hint: adapt
the algorithm in Exercise 4.10.

EXERCISE 16.44. In Exercise 16.41, we saw that 2 factors as −i(1 + i)2 in Z[i],
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where 1+ i is irreducible. This exercise examines the factorization in Z[i] of prime
numbers p > 2. Show that:

(a) for every irreducible π ∈ Z[i], there exists a unique prime number p such
that π divides p;

(b) for all prime numbers p ≡ 1 (mod 4), we have p = ππ, where π ∈ Z[i]
is irreducible, and the complex conjugate π of π is also irreducible and not
associate to π;

(c) all prime numbers p ≡ 3 (mod 4) are irreducible in Z[i].

Hint: for parts (b) and (c), use Theorem 2.34.

16.9.2 Unique factorization in D[X ]

In this section, we prove the following:

Theorem 16.43. If D is a UFD, then so is D[X ].

This theorem implies, for example, that Z[X ] is a UFD. Applying the theorem
inductively, one also sees that Z[X1, . . . ,Xn] is a UFD, as is F [X1, . . . ,Xn] for every
field F .

We begin with some simple observations. First, recall that for an integral domain
D, D[X ] is an integral domain, and the units in D[X ] are precisely the units in D.
Second, it is easy to see that an element of D is irreducible in D if and only if it is
irreducible in D[X ]. Third, for c ∈ D and f =

∑

i ciX
i ∈ D[X ], we have c | f if

and only if c | ci for all i.
We call a non-zero polynomial f ∈ D[X ] primitive if the only elements of

D that divide f are units. If D is a UFD, then given any non-zero polynomial
f ∈ D[X ], we can write it as f = cf ′, where c ∈ D and f ′ ∈ D[X ] is a primitive
polynomial: just take c to be a greatest common divisor of all the coefficients of f .

Example 16.25. In Z[X ], the polynomial f = 4X 2 + 6X + 20 is not primitive, but
we can write f = 2f ′, where f ′ = 2X 2 + 3X + 10 is primitive. 2

It is easy to prove the existence part of Theorem 16.43:

Theorem 16.44. Let D be a UFD. Every non-zero, non-unit element of D[X ] can
be expressed as a product of irreducibles in D[X ].

Proof. Let f be a non-zero, non-unit polynomial in D[X ]. If f is a constant, then
because D is a UFD, f factors into irreducibles in D. So assume f is not constant.
If f is not primitive, we can write f = cf ′, where c is a non-zero, non-unit in D,
and f ′ is a primitive, non-constant polynomial in D[X ]. Again, as D is a UFD, c
factors into irreducibles in D.
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From the above discussion, it suffices to prove the theorem for non-constant,
primitive polynomials f ∈ D[X ]. If f is itself irreducible, we are done. Otherwise,
we can write f = gh, where g, h ∈ D[X ] and neither g nor h are units. Further, by
the assumption that f is a primitive, non-constant polynomial, both g and h must
also be primitive, non-constant polynomials; in particular, both g and h have degree
strictly less than deg(f ), and the theorem follows by induction on degree. 2

The uniqueness part of Theorem 16.43 is (as usual) more difficult. We begin
with the following fact:

Theorem 16.45. Let D be a UFD, let p be an irreducible in D, and let g, h ∈ D[X ].
Then p | gh implies p | g or p | h.

Proof. Consider the quotient ring D/pD, which is an integral domain (because
D is a UFD), and the corresponding ring of polynomials (D/pD)[X ], which is
also an integral domain. Also consider the natural map that sends a ∈ D to
a := [a]p ∈ D/pD, which we can extend coefficient-wise to a ring homomorphism
from D[X ] to (D/pD)[X ] (see Example 7.46). If p | gh, then we have

0 = gh = gh,

and since (D/pD)[X ] is an integral domain, it follows that g = 0 or h = 0, which
means that p | g or p | h. 2

Theorem 16.46. Let D be a UFD. The product of two primitive polynomials in
D[X ] is also primitive.

Proof. Let g, h ∈ D[X ] be primitive polynomials, and let f := gh. If f is not
primitive, then c | f for some non-zero, non-unit c ∈ D, and as D is a UFD, there
is some irreducible element p ∈ D that divides c, and therefore, divides f as well.
By Theorem 16.45, it follows that p | g or p | h, which implies that either g is not
primitive or h is not primitive. 2

Suppose that D is a UFD and that F is its field of fractions. Any non-zero
polynomial f ∈ F [X ] can always be written as f = (c/d)f ′, where c, d ∈ D,
with d 6= 0, and f ′ ∈ D[X ] is primitive. To see this, clear the denominators of the
coefficients of f , writing df = f ′′, where 0 6= d ∈ D and f ′′ ∈ D[X ]. Then take c
to be a greatest common divisor of the coefficients of f ′′, so that f ′′ = cf ′, where
f ′ ∈ D[X ] is primitive. Then we have f = (c/d)f ′, as required. Of course, we
may assume that c and d are relatively prime—if not, we may divide c and d by a
greatest common divisor.

Example 16.26. Let f = (3/5)X 2 + 9X + 3/2 ∈ Q[X ]. Then we can write
f = (3/10)f ′, where f ′ = 2X 2 + 30X + 5 ∈ Z[X ] is primitive. 2
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As a consequence of the previous theorem, we have:

Theorem 16.47. Let D be a UFD and let F be its field of fractions. Suppose that
f , g ∈ D[X ] and h ∈ F [X ] are non-zero polynomials such that f = gh and g is
primitive. Then h ∈ D[X ].

Proof. Write h = (c/d)h′, where c, d ∈ D and h′ ∈ D[X ] is primitive. Let us
assume that c and d are relatively prime. Then we have

d · f = c · gh′. (16.9)

We claim that d ∈ D∗. To see this, note that (16.9) implies that d | (c · gh′),
and the assumption that c and d are relatively prime implies that d | gh′. But by
Theorem 16.46, gh′ is primitive, from which it follows that d is a unit. That proves
the claim.

It follows that c/d ∈ D, and hence h = (c/d)h′ ∈ D[X ]. 2

Theorem 16.48. Let D be a UFD and F its field of fractions. If f ∈ D[X ] with
deg(f ) > 0 is irreducible, then f is also irreducible in F [X ].

Proof. Suppose that f is not irreducible in F [X ], so that f = gh for non-constant
polynomials g, h ∈ F [X ], both of degree strictly less than that of f . We may write
g = (c/d)g′, where c, d ∈ D and g′ ∈ D[X ] is primitive. Set h′ := (c/d)h, so that
f = gh = g′h′. By Theorem 16.47, we have h′ ∈ D[X ], and this shows that f is
not irreducible in D[X ]. 2

Theorem 16.49. Let D be a UFD. Let f ∈ D[X ] with deg(f ) > 0 be irreducible,
and let g, h ∈ D[X ]. If f divides gh in D[X ], then f divides either g or h in
D[X ].

Proof. Suppose that f ∈ D[X ] with deg(f ) > 0 is irreducible. This implies that f
is a primitive polynomial. By Theorem 16.48, f is irreducible in F [X ], where F is
the field of fractions of D. Suppose f divides gh in D[X ]. Then because F [X ] is
a UFD, f divides either g or h in F [X ]. But Theorem 16.47 implies that f divides
either g or h in D[X ]. 2

Theorem 16.43 now follows immediately from Theorems 16.44, 16.45, and
16.49, together with Theorem 16.34.

In the proof of Theorem 16.43, there is a clear connection between factorization
in D[X ] and F [X ], where F is the field of fractions of D. We should perhaps make
this connection more explicit. Let f ∈ D[X ] be a non-zero polynomial. We may
write f as

f = up
a1
1 · · · p

ar
r f

b1
1 · · · f

bs
s .
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where u ∈ D∗, the pi’s are non-associate, irreducible elements of D, and the fj’s
are non-associate, irreducible, non-constant polynomials over D (and in particular,
primitive). For j = 1, . . . , s, let gj := lc(fj)−1fj be the monic associate of fj in
F [X ]. Then in F [X ], f factors as

f = cg
b1
1 · · · g

bs
s ,

where

c := u ·
∏

i

p
ai
i ·
∏

j

lc(fj)bj ∈ F ,

and the gj’s are distinct, irreducible, monic polynomials over F .

Example 16.27. Consider the polynomial f = 4X 2 + 2X − 2 ∈ Z[X ]. Over Z[X ],
f factors as 2(2X − 1)(X + 1), where each of these three factors is irreducible in
Z[X ]. However, over Q[X ], f factors as 4(X − 1/2)(X + 1), where 4 is a unit, and
the other two factors are irreducible. 2

The following theorem provides a useful criterion for establishing that a polyno-
mial is irreducible.

Theorem 16.50 (Eisenstein’s criterion). Let D be a UFD and F its field of frac-
tions. Let f = cnX

n + cn−1X
n−1 + · · · + c0 ∈ D[X ]. If there exists an irreducible

p ∈ D such that

p - cn, p | cn−1, · · · , p | c0, p2 - c0,

then f is irreducible over F .

Proof. Let f be as above, and suppose it were not irreducible in F [X ]. Then by
Theorem 16.48, we could write f = gh, where g, h ∈ D[X ], both of degree strictly
less than that of f . Let us write

g = akX
k + · · · + a0 and h = b`X

` + · · · + b0,

where ak 6= 0 and b` 6= 0, so that 0 < k < n and 0 < ` < n. Now, since cn = akb`,
and p - cn, it follows that p - ak and p - b`. Further, since c0 = a0b0, and p | c0 but
p2 - c0, it follows that p divides one of a0 or b0, but not both—for concreteness, let
us assume that p | a0 but p - b0. Also, let m be the smallest positive integer such
that p - am—note that 0 < m ≤ k < n.

Now consider the natural map that sends a ∈ D to a := [a]p ∈ D/pD, which
we can extend coefficient-wise to a ring homomorphism from D[X ] to (D/pD)[X ]
(see Example 7.46). Because D is a UFD and p is irreducible, D/pD is an integral
domain. Since f = gh, we have

cnX
n = f = gh = (akX k + · · · + amXm)(b`X ` + · · · + b0). (16.10)
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But notice that when we multiply out the two polynomials on the right-hand side
of (16.10), the coefficient of Xm is amb0 6= 0, and as m < n, this clearly contradicts
the fact that the coefficient of Xm in the polynomial on the left-hand side of (16.10)
is zero. 2

As an application of Eisenstein’s criterion, we have:

Theorem 16.51. For every prime number q, the qth cyclotomic polynomial

Φq :=
X q − 1
X − 1

= X q−1 + X q−2 + · · · + 1

is irreducible over Q.

Proof. Let

f := Φq

(

X + 1
)

=
(X + 1)q − 1
(X + 1) − 1

.

It is easy to see that

f =
q−1
∑

i=0

ciX
i, where ci =

(

q

i + 1

)

(i = 0, . . . , q − 1).

Thus, cq−1 = 1, c0 = q, and for 0 < i < q − 1, we have q | ci (see Exercise 1.14).
Theorem 16.50 therefore applies, and we conclude that f is irreducible over Q. It
follows that Φq is irreducible over Q, since if Φq = gh were a non-trivial factoriza-
tion of Φq, then f = Φq

(

X + 1
)

= g
(

X + 1
)

· h
(

X + 1
)

would be a non-trivial
factorization of f . 2

EXERCISE 16.45. Show that neither Z[X ] nor F [X ,Y ] (where F is a field) are
PIDs (even though they are UFDs).

EXERCISE 16.46. Let f ∈ Z[X ] be a monic polynomial. Show that if f has a root
x ∈ Q, then x ∈ Z, and x divides the constant term of f .

EXERCISE 16.47. Let D be a UFD, let p be an irreducible element of D, and
consider the natural map that sends a ∈ D to a := [a]p ∈ D/pD, which we
extend coefficient-wise to a ring homomorphism from D[X ] to (D/pD)[X ] (see
Example 7.46). Show that if f ∈ D[X ] is a primitive polynomial such that p - lc(f )
and f ∈ (D/pD)[X ] is irreducible, then f is irreducible.

EXERCISE 16.48. Let a be a non-zero, square-free integer, with a /∈ {±1}, and let
n be a positive integer. Show that the polynomial X n − a is irreducible in Q[X ].

EXERCISE 16.49. Show that the polynomial X 4 + 1 is irreducible in Q[X ].



464 More rings

EXERCISE 16.50. Let F be a field, and consider the ring of bivariate polynomials
F [X ,Y ]. Show that in this ring, the polynomial X 2+Y 2−1 is irreducible, provided
F does not have characteristic 2. What happens if F has characteristic 2?

EXERCISE 16.51. Design and analyze an efficient algorithm for the following
problem. The input is a pair of polynomials g, h ∈ Z[X ], along with their greatest
common divisor d in the ring Q[X ]. The output is the greatest common divisor of
g and h in the ring Z[X ].

EXERCISE 16.52. Let g, h ∈ Z[X ] be non-zero polynomials with d := gcd(g, h) ∈
Z[X ]. Show that for every prime p not dividing lc(g) lc(h), we have d | gcd(g, h),
and except for finitely many primes p, we have d = gcd(g, h). Here, d, g, and h
denote the images of d, g, and h in Zp[X ] under the coefficient-wise extension of
the natural map from Z to Zp (see Example 7.47).

EXERCISE 16.53. Let F be a field, and let g, h ∈ F [X ,Y ]. Define V (g, h) :=
{(x, y) ∈ F ×F : g(x, y) = h(x, y) = 0}. Show that if g and h are relatively prime,
then V (g, h) is a finite set. Hint: consider the rings F (X )[Y ] and F (Y )[X ].

16.10 Notes
The “(1+ i)-ary gcd algorithm” in Exercise 16.42 for computing greatest common
divisors of Gaussian integers is based on algorithms in Weilert [106] and Damgård
and Frandsen [31]. The latter paper also develops a corresponding algorithm for
Eisenstein integers (see Exercise 16.35). Weilert [107] presents an asymptotically
fast algorithm that computes the greatest common divisor of Gaussian integers of
length at most ` in time O(`1+o(1)).


